
Examining Control Flow Leakage Attacks on TEEs

Luca Wilke*, Florian Sieck* and Thomas Eisenbarth
(*equal contribution)
Intel Product Assurance and Security - Tech Sharing - November 5, 2024



Overview

1. Attacks on TDX
2. Finding Control Flow Leakages
3. Countermeasures

1/40



Confidential VMs

Goal: Remove cloud provider from TCB

• AMD SEV-SNP
• Intel TDX
• (ARM CCA)

Available in the wild on

2/40



Single-Stepping Attacks



Single-Stepping

3/40



Single-Stepping

3/40



Single-Stepping: The bane of TEEs

Interrupt Latency Attacks Instruction Counting Attacks

Amplifier Zero-Stepping Attacks

4/40



History of Single-Stepping

5/40



History of Single-Stepping

5/40



History of Single-Stepping

5/40



Countermeasure in TDX



Single-Stepping Countermeasure

6/40



Single-Stepping Countermeasure

6/40



Single-Stepping Countermeasure

6/40



Single-Stepping Countermeasure

6/40



Single-Stepping Countermeasure

6/40



Single-Stepping Countermeasure

Two attacks
1. Single-Stepping
2. StumbleStepping

6/40



Single-Stepping TDX



Re-enable Single-Stepping

7/40



Re-enable Single-Stepping

7/40



Re-enable Single-Stepping

7/40



Re-enable Single-Stepping

7/40



Filtering Zero-Steps

• SGX-Step: Check if “Accessed”-bit is set

⇒ 2nd level page tables inaccessible
with TDX

• SEV-Step: Performance monitoring counters⇒ isolated by TDX
• Cache attack on TD code page: works

8/40



Filtering Zero-Steps

• SGX-Step: Check if “Accessed”-bit is set⇒ 2nd level page tables inaccessible
with TDX

• SEV-Step: Performance monitoring counters⇒ isolated by TDX
• Cache attack on TD code page: works

8/40



Filtering Zero-Steps

• SGX-Step: Check if “Accessed”-bit is set⇒ 2nd level page tables inaccessible
with TDX

• SEV-Step: Performance monitoring counters

⇒ isolated by TDX
• Cache attack on TD code page: works

8/40



Filtering Zero-Steps

• SGX-Step: Check if “Accessed”-bit is set⇒ 2nd level page tables inaccessible
with TDX

• SEV-Step: Performance monitoring counters⇒ isolated by TDX

• Cache attack on TD code page: works

8/40



Filtering Zero-Steps

• SGX-Step: Check if “Accessed”-bit is set⇒ 2nd level page tables inaccessible
with TDX

• SEV-Step: Performance monitoring counters⇒ isolated by TDX
• Cache attack on TD code page: works

8/40



Interlude: Zero-Stepping Attacks

9/40



Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change
2. Leak information from context switch
3. Example: RAPL software power measurements

10/40



Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change
2. Leak information from context switch
3. Example: RAPL software power measurements

10/40



Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change
2. Leak information from context switch
3. Example: RAPL software power measurements

10/40



Timer-based Zero-Stepping on TDX

11/40



StumbleStepping TDX



StumbleStepping

12/40



StumbleStepping

12/40



StumbleStepping

12/40



StumbleStepping

12/40



StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME
3. But also: MKTME coherency mechanism enables KeyID-based Flush+Reload

13/40



StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME
3. But also: MKTME coherency mechanism enables KeyID-based Flush+Reload

13/40



StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME
3. But also: MKTME coherency mechanism enables KeyID-based Flush+Reload

13/40



Exploiting MKTME’s coherency mechanism

KeyID based coherency mechanism for flushing cache lines

14/40



Exploiting MKTME’s coherency mechanism

KeyID based coherency mechanism for flushing cache lines

14/40



Exploiting MKTME’s coherency mechanism

KeyID based coherency mechanism for flushing cache lines

14/40



Exploiting MKTME’s coherency mechanism

KeyID based coherency mechanism for flushing cache lines

14/40



StumbleStepping Details

• Cache attack X

• Frequency throttling improves temporal resolution even more

• Page faults for precise termination of prevention mode

15/40



StumbleStepping Details

• Cache attack X
• Frequency throttling improves temporal resolution even more

• Page faults for precise termination of prevention mode

15/40



StumbleStepping Details

• Cache attack X
• Frequency throttling improves temporal resolution even more

• Page faults for precise termination of prevention mode

15/40



Primitive Evaluation



Secret Dependent Control-Flow

16/40



Exploitation with Single-Stepping

17/40



Exploitation with Single-Stepping

17/40



Exploitation with Single-Stepping

17/40



Exploitation with Single-Stepping

17/40



Exploitation with StumbleStepping

18/40



Synthetic Single-Stepping Evaluation

Goals: Filter all zero-steps & show absence of multi-steps

Evaluation target

• 3 configs: 1, 9 and 10 loop iterations
• corresponds to 8, 56 and 62
instructions

• 10 000 measurements for each config
• Found no errors
• only 0.8% zero-step events

19/40



Synthetic StumbleStepping Evaluation

Goals: Evaluate Accuracy of inferred instruction count

Evaluation Target

Inferred Executed Instructions

However...

20/40



Synthetic StumbleStepping Evaluation

Goals: Evaluate Accuracy of inferred instruction count

Evaluation Target

Inferred Executed Instructions
However...

20/40



Synthetic StumbleStepping Evaluation cont.

Noise grows with observation length

Inferred Executed Instructions
(short)

Inferred Executed Instructions
(long)

21/40



StumbleStepping E2E Attack Sneak Peek

Control Flow events for secp160r1 ECDSA in wolfSSL
22/40



Finding Control Flow Leakages



Finding Control-Flow Leakages with Microwalk

Microwalk

23/40



Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n

2. Also: Get it fast
3. Modular reduction approach:

3.1 Sample candidate nonce k′

3.2 Compute k as k′ mod n

24/40



Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n
2. Also: Get it fast

3. Modular reduction approach:

3.1 Sample candidate nonce k′

3.2 Compute k as k′ mod n

24/40



Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n
2. Also: Get it fast
3. Modular reduction approach:

3.1 Sample candidate nonce k′

3.2 Compute k as k′ mod n

24/40



Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n
2. Also: Get it fast
3. Modular reduction approach:

3.1 Sample candidate nonce k′

3.2 Compute k as k′ mod n

24/40



Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n
2. Also: Get it fast
3. Modular reduction approach:

3.1 Sample candidate nonce k′

3.2 Compute k as k′ mod n

24/40



Compute k′ mod n

25/40



Compute k′ mod n

25/40



Compute k′ mod n

25/40



Compute k′ mod n

25/40



Compute k′ mod n

25/40



Attack Case Study



ECDSA Nonce Truncation in wolfSSL

1 int _sp_div_impl(sp_int* a, d, r, trial) {
2 for (i = a->used - 1; i >= d->used; i--) {
3 //Calculate trial quotient
4 t = sp_div_word(a->dp[i], a->dp[i-1], dt);
5 do {
6 for (j = 0; j < d->used; j++) {...}
7 for (j = d->used; j > 0; j--)
8 //Event W2

9 if (trial->dp[j] != a->dp[j + o])
10 break;
11 if (trial->dp[j] > a->dp[j + o]) { t--; }
12 //Event W1

13 } while (trial->dp[j] > a->dp[j + o]);
14 }
15 };

26/40



Analyzing the Distributions - Sampling the nonce k 128 million times

27/40



Analyzing the Distributions - Sampling the nonce k 128 million times

27/40



Analyzing the Distributions - Sampling the nonce k 128 million times

27/40



Analyzing the Distributions - Sampling the nonce k 128 million times

27/40



Nonce Bias

Nonce bit distribution given leaked loop iterations for secp160r1 and
brainpoolP224r1.

0 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

140 160
Nonce bits

secp160r1; Samples in dist: 1420; trail guesses ctr: 2

0 10 20
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

210 220
Nonce bits

brainpoolP224r1; Samples in dist: 15637; Ctr1: 1; Ctr2: 0

28/40



Leakage Overview in wolfSSL and OpenSSL

wolfSSL OpenSSL

Curve Event MI / FB Event MI / FB

(W1, W2) [bit / bit] (O1, O2) [bit / bit]
Pr[A = a] Pr[A = a]

bp224r1 (2, *) 1.6 / 1 (1, 0) 7 / 6
0.09 1.6 · 10−4

bp320r1 (3, *) 3 / 3 (2, *) 3 / 3
< 0.002 1.7 · 10−3

bp384r1 (2, *) 3.5 / 0 (1, *) 3.5 / 0
0.05 0.05

secp160r1 (2, *) 15.6 / 15 (1, *) 15.8 / 15
1.5 · 10−5 1.3 · 10−5

29/40



StumbleStepping the Nonce Bias

30/40



StumbleStepping the Nonce Bias

30/40



Countermeasures



Improved Single-Stepping Heuristic

Current Heuristic: Benign if
rip_delta > INTEL64_MAX_INST_LEN ∗ 2

OR
vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD

Suggested Improvements:
• Only rely on instruction pointer progress
• AEX-Notify shows that reliable “n-stepping” is not possible

31/40



Improved Single-Stepping Heuristic

Current Heuristic: Benign if
rip_delta > INTEL64_MAX_INST_LEN ∗ 2

OR
vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD

Suggested Improvements:
• Only rely on instruction pointer progress
• AEX-Notify shows that reliable “n-stepping” is not possible

31/40



Intel’s TDX Module Patch

32/40



Preventing Instruction Counting Attacks

• StumbleStepping attack won’t be mitigated by TDX module
• Protecting crypto code via constant time programming is feasible
• Protecting databases, image decoding, etc. is not feasible

Need principled mitigations as part of the TEE

33/40



Preventing Instruction Counting Attacks

• StumbleStepping attack won’t be mitigated by TDX module
• Protecting crypto code via constant time programming is feasible
• Protecting databases, image decoding, etc. is not feasible

Need principled mitigations as part of the TEE

33/40



Preventing Instruction Counting Attacks

• StumbleStepping attack won’t be mitigated by TDX module
• Protecting crypto code via constant time programming is feasible
• Protecting databases, image decoding, etc. is not feasible

Need principled mitigations as part of the TEE

33/40



Preventing Instruction Counting Attacks

• StumbleStepping attack won’t be mitigated by TDX module
• Protecting crypto code via constant time programming is feasible
• Protecting databases, image decoding, etc. is not feasible

Need principled mitigations as part of the TEE

33/40



Approach 1: Changing MTF flag

34/40



Approach 1: Changing MTF flag

Implementation effort hard to judge for us

35/40



Approach 2: AEX-Notify

Recap Single-Stepping:

Without slowing down Instr 1, reliable, repeated single-stepping is not
possible

36/40



Approach 2: AEX-Notify

Recap Single-Stepping:

Without slowing down Instr 1, reliable, repeated single-stepping is not
possible

36/40



Approach 2: AEX-Notify

Recap Single-Stepping:

Without slowing down Instr 1, reliable, repeated single-stepping is not
possible

36/40



Approach 2: AEX-Notify

Recap Single-Stepping:

Without slowing down Instr 1, reliable, repeated single-stepping is not
possible

36/40



Approach 2: AEX-Notify cont.

AEX-Notify idea:

• Prefetch code is constant time
• Small, atomic part at the end

37/40



Approach 2: AEX-Notify cont.

AEX-Notify idea:

• Prefetch code is constant time
• Small, atomic part at the end

37/40



Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes⇒ portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40



Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes⇒ portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40



Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes⇒ portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40



Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes⇒ portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40



Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes⇒ portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40



What about page fault side channel

• Page granular leakage already sufficient to leak image from jpeg decoding
• TDX already protects the 2nd level page tables but exports page blocking API
• Why not completely restrict forcing page faults?

39/40



What about page fault side channel

• Page granular leakage already sufficient to leak image from jpeg decoding
• TDX already protects the 2nd level page tables but exports page blocking API
• Why not completely restrict forcing page faults?

39/40



What about page fault side channel

• Page granular leakage already sufficient to leak image from jpeg decoding
• TDX already protects the 2nd level page tables but exports page blocking API
• Why not completely restrict forcing page faults?

39/40



Summary



Summary

• Attacks on TDX
• full single-stepping
• instruction counting via StumbleStepping;

• Finding & Exploiting Control Flow Leakages
• Microwalk + Distribution Analysis
• Nonce truncation in wolfSSL and OpenSSL leaks for certain curves

• Countermeasures
• Improved MTF flag, AEXNotify for CVMs
• Preventing page fault side-channel?

• Responsible Disclosure:
• Intel fixed single-stepping with TDX module 1.5.06 but not StumbleStepping
• wolfSSL and OpenSSL switched to rejection sampling

40/40



Backup Slides


	Single-Stepping Attacks
	Countermeasure in TDX
	Single-Stepping TDX
	StumbleStepping TDX
	Primitive Evaluation
	Finding Control Flow Leakages
	Attack Case Study
	Countermeasures
	Summary
	Appendix

