UNIVERSITAT ZU LUBECK
INSTITUTE FOR IT SECURITY

Examining Control Flow Leakage Attacks on TEEs

Luca Wilke* Florian Sieck* and Thomas Eisenbarth
(*equal contribution)

Intel Product Assurance and Security - Tech Sharing - November 5, 2024

Overview

1. Attacks on TDX
2. Finding Control Flow Leakages
3. Countermeasures

1/40

Confidential VMs

Goal: Remove cloud provider from TCB

7

S B . AMD SEV-SNP
- Intel TDX
. (ARM CCA)

CVMm

<
=

Available in the wild on

awsDA

2/40

Single-Stepping Attacks

Single-Stepping

Single-Step
[Attack Logic] [Seﬁ.‘?’:“:\rlc] [Enter VM] ‘ Instr 1 ‘ Instr 2 Instr 3

A |

3/40

Single-Stepping

Multi-Step

Zero-Step

[Attack Logic] [

Setup APIC
Timer

-

] [Enter VM

Single-Step \

Instr 1 Instr 2 Instr 3

3/40

Single-Stepping: The bane of TEEs

800

[generate random num : rdrand [register increment: add $0x1, %rax
700{ C floating point scale: fscale [no-operation : nop

[load serialization : lfence
600

mi o)

if keyl[i] ==

Frequency
2
g
8

o 5
7700 7800 7900 8000 8200 8300 8400 8500

8100
IRQ latency (cycles)

Interrupt Latency Attacks Instruction Counting Attacks

T g

Amplifier Zero-Stepping Attacks

U CACHE

4/40

History of Single-Stepping

SGX-Step

5/40

History of Single-Stepping

SEV-Step

SGX-Step

5/40

History of Single-Stepping

SEV-Step

O O

SGX-Step

5/40

Countermeasure in TDX

Single-Stepping Countermeasure

| ™

Single-Stepping

Detection &
Prevention

TDX Module

[Hypervisor]
6/40

Single-Stepping Countermeasure

| ™

Single-Stepping

Detection &

Prevention
TDX Module

A
Enter TD through °
TDX Module
[Hypervisor]
6/40

Single-Stepping Countermeasure

Interrupt during
1st instruction
| ™

Single-Stepping

Detection &

Prevention
TDX Module

A
Enter TD through °
TDX Module
[Hypervisor]
6/40

Single-Stepping Countermeasure
Interrupt during a
1st instruction ° ’
| D \
P e)
(°> Prevention Mode
N

Single-Stepping

Detection &

Prevention
TDX Module

A
Enter TD through °
TDX Module
[Hypervisor]
6/40

Single-Stepping Countermeasure
Interrupt during q
1st instruction ° ,
| ™ \
P N)
(a) Prevention Mode
N

Single-Stepping

Detection &
Prevention
TDX Module
A
Return control to
Enter TD through ° ° "
TDX Module | hypervisor
[Hypervisor]
6/40

Single-Stepping Countermeasure
Interrupt during @
1st instruction ° }
| D \
P y
(°> Prevention Mode
N

Two attacks
1. Single-Stepping

Single-Stepping

Detection &

Prevention 2. StumbleStepping
TDX Module
A
Return control to
Enter TD through ° ° r
TDX Module | hypervisor
[Hypervisor]
6/40

Single-Stepping TDX

Re-enable Single-Stepping

Classified as benign if : "> 2 Instructions" OR "> THRESH cycles"

Regular CPU speed }
[rdtsc] [enter TD] [Instr. 1] [TD Exit] [rdtsc]
rdtsc time

\ 4

7140

Re-enable Single-Stepping

Classified as benign if : "> 2 Instructions" OR "> THRESH cycles"

Regular CPU speed }
Activate
[rdtst [enter TD] [Instr. 1] [TD Exit] [rdtsc] countermeasure
rdtsc time
L [L [L L N
| 1 | T | T | | 1 |] | 1 | 1 | 1 | 1 ”

7140

Re-enable Single-Stepping

Classified as benign if : "> 2 Instructions" OR "> THRESH cycles"

Regular CPU speed } :
. Activate
[rdtsc] [enter TD] [Instr. 1] [TD Exit] [rdtsc] countermeasure
1
rdtsc time 1
(1 [L [L L L L L 1 L 1 L (] L L1 L L L N
| 1 | T | T | | 1 |] | 1 | 1 | 1 | T 1 ”
1
Attacker throttles CPU , !
T
[rdtsc][enter TD][Instr. 1] [TDIExit][rdtsc]
1

7140

Re-enable Single-Stepping

Classified as benign if : "> 2 Instructions" OR "> THRESH cycles"

Regular CPU speed } :
. Activate
[rdtsc] [enter TD] [Instr. 1] [TD Exit] [rdtsc] countermeasure
1
rdtsc time !
(1 [L [L L L L L 1 L 1 L (] L L1 L L L N
| 1 | T | T | | 1 |] | 1 | 1 | I 1 | T 1 ”
Beni
Attacker throttles CPU , I enign
T
[rdtsc][enter TD][Instr. 1] [TDIExit][rdtsc]
1

7140

Filtering Zero-Steps

- SGX-Step: Check if “Accessed”-bit is set

8/40

Filtering Zero-Steps

- SGX-Step: Check if “Accessed”-bit is set = 2nd level page tables inaccessible
with TDX

8/40

Filtering Zero-Steps

- SGX-Step: Check if “Accessed”-bit is set = 2nd level page tables inaccessible
with TDX

- SEV-Step: Performance monitoring counters

8/40

Filtering Zero-Steps

- SGX-Step: Check if “Accessed”-bit is set = 2nd level page tables inaccessible
with TDX

- SEV-Step: Performance monitoring counters = isolated by TDX

8/40

Filtering Zero-Steps

- SGX-Step: Check if “Accessed”-bit is set = 2nd level page tables inaccessible
with TDX

- SEV-Step: Performance monitoring counters = isolated by TDX
- Cache attack on TD code page: works

8/40

Interlude: Zero-Stepping Attacks

9/40

Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change

2. Leak information from context switch

3. Example: RAPL software power measurements

10/40

Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change

2. Leak information from context switch

3. Example: RAPL software power measurements

10/40

Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change

2. Leak information from context switch

3. Example: RAPL software power measurements

10/40

Timer-based Zero-Stepping on TDX

Classified as benign if : "> 2 Instructions” OR "> THRESH cycles"

Regular CPU speed ’ :

: Activate
[rdtsc] [enter TD] [TD Exit] [rdtsc] : countermeasure
rdtsc time I

———————————————
, : Benign

Attacker throttles CPU I

T
[rdtsc][enter TD][TD Exit I][rdtsc]

I

11/40

StumbleStepping TDX

StumbleStepping

0

Single-Stepping
Detection &
Prevention

TDX Module

A

0 °‘

[Hypervisor]
12/40

StumbleStepping
of
™ \ S
e Read / Write)
TD State

S Data

Single-Stepping

Detection &
Prevention

TDX Module
A

0 °‘

[Hypervisor]

12/40

(%)
0
0)
ead / Write
(@)=

TD State
Data
Single-Stepping A
Detection & Cache
Prevention Attack

TDX Module

CPU1 q CPU 2
12/40

(%
0
D)
ead / Write
(@)=

TD State
Data
Single-Stepping A
Detection & Cache
Prevention Attack
ATDX Module Leaks repetitions of @

CPU1 q CPU 2
12/40

StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME

3. But also: MKTME coherency mechanism enables KeylD-based Flush+Reload

13/40

StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME

3. But also: MKTME coherency mechanism enables KeylD-based Flush+Reload

13/40

StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME

3. But also: MKTME coherency mechanism enables KeylD-based Flush+Reload

13/40

Exploiting MKTME’s coherency mechanism

TD:—Read> 1 | 0x1_000 |
KeylID Address

HV:—Read> 2 | 0x1_000 |
KeylID Address

Cache

KeylD based coherency mechanism for flushing cache lines

14/40

Exploiting MKTME’s coherency mechanism

TD:—Read> 1 | 0x1_000 |

KeylD Address 2 TAG Data
HV:—Read> 2 | 0x1_000 —

KeylID Address

Cache

KeylD based coherency mechanism for flushing cache lines

14/40

Exploiting MKTME’s coherency mechanism

TD:—Read> 1 | 0x1_000 —
KeylD Address 1 TAG Data
HV:—Read> 2 | 0x1_000 —
KeylID Address
Cache

KeylD based coherency mechanism for flushing cache lines

14/40

Exploiting MKTME’s coherency mechanism

TD:—Read> 1 | 0x1_000 —
KeylD Address 2 TAG Data
HV:—Read> 2 | 0x1_000 —
KeylID Address
Cache

KeylD based coherency mechanism for flushing cache lines

14/40

StumbleStepping Details

- Cache attack v/

15/40

StumbleStepping Details

- Cache attack v/
- Frequency throttling improves temporal resolution even more

15/40

StumbleStepping Details

- Cache attack v/
- Frequency throttling improves temporal resolution even more

- Page faults for precise termination of prevention mode

15/40

Primitive Evaluation

Secret Dependent Control-Flow

mul —)[mov
R

mov

16/40

Exploitation with Single-Stepping

if keyl[i] == 1 -

- mov
-|—) ret —-—)

Page Fault Page Fault

17/40

Exploitation with Single-Stepping

. Step

AN

if keyl[i] == 1 -

- mov
-|—) ret —-—)

Page Fault Page Fault

17/40

Exploitation with Single-Stepping

if keyl[i] == 1 -

Page Fault Page Fault

17/40

Exploitation with Single-Stepping

if keyl[i] == 1 -

Page Fault Page Fault

17/40

Exploitation with StumbleStepping

StumbleStep "Burst"

if key[i] ==

- mov
-’—> ret —-—)

Page Fault Page Fault

18/40

Synthetic Single-Stepping Evaluation

Goals: Filter all zero-steps & show absence of multi-steps

mov qword ptr[r8], 42

dec rax

nop; nop; nop; nop

jnz

mov qword ptr[r8], 42

Evaluation target

- 3 configs: 1, 9 and 10 loop iterations

- corresponds to 8,56 and 62
instructions

- 10000 measurements for each config
- Found no errors

- only 0.8% zero-step events

19/40

Synthetic StumbleStepping Evaluation

Goals: Evaluate Accuracy of inferred instruction count

7000 T . [4instr
’6 instr.”
6000 [8instr
mov qword ptr[r8], 42 B — ’10";:511—’
e p . = = 5000 [’12instr’
E ec rax 4000]
jnz 3000
T "7 2000
mov qword ptr[r8], 42
1000 A
Evaluation Target 0 ln.f L ,
5 10 15 20

Inferred Executed Instructions

20/40

Synthetic StumbleStepping Evaluation

Goals: Evaluate Accuracy of inferred instruction count

7000 T . [4instr
’6 instr.”
6000 [8instr
mov qword ptr[r8], 42 B — ’10";:511—’
e p . = = 5000 [’12instr’
E ec rax 4000]
jnz 3000
T "7 2000
mov qword ptr[r8], 42
1000 A
Evaluation Target 0 ln.f L ,
5 10 15 20

Inferred Executed Instructions
However...

20/40

Synthetic StumbleStepping Evaluation cont.

Noise grows with observation length

7000 1 i [4instr” 3000 [202 instr’
’6 instr. 204 instr.”
6000 | ['8instr’ 2500 [206 instr.’
[’10instr’ [208 instr’
5000 [’12instr’ 2000 [210 instr’
4000 1500 ["212instr”
3000 1
1000
2000
1000 1 500
0 1 1 — . : 0
5 10 15 20 200 220 230
Inferred Executed Instructions Inferred Executed Instructions
(short) (long)

21/40

StumbleStepping E2E Attack Sneak Peek

105 | I 178 instr’

—————— ’mean for 178 instr.’
10* 1 [230 instr’

’mean for 230 instr.’

0] I 239 instr”

______ ’mean for 239 instr.
107 4 E
10" ; |
100 i I]‘]l

180 200 220 240

Control Flow events for secp160r1 ECDSA in wolfSSL
22/40

Finding Control Flow Leakages

Finding Control-Flow Leakages with Microwalk

Trace
analysis

Trace
preprocessing

Trace
generation

Trace

Intel Pin (x86)
Jalangi2 (JS)

Binary Mem. trace leakage
call £1

read X

Jump A B

Jump C — F

Teturn

Test
cases

Analysis
Result

Text Control flow leakage

Trace dump

Microwalk

23/40

Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n

24140

Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n
2. Also: Get it fast

24140

Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n

2. Also: Get it fast
3. Modular reduction approach:

2440

Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n

2. Also: Get it fast
3. Modular reduction approach:
31 Sample candidate nonce R’

2440

Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n

2. Also: Get it fast
3. Modular reduction approach:

31 Sample candidate nonce K
3.2 Compute kas kK mod n

2440

Compute ¥ mod n

2nd highest

lowest word
word

k' |highest word

n highest word lowest word

25/40

Compute ¥ mod n

/

sop k;np
. R Nop
/ . 2nd highest
k" |highest word word lowest word
n highest word lowest word
Ntop

25/40

Compute ¥ mod n

/

¢
= k:fnp
: h ntop
: - -
k' |highest word S | .. lowest word whilen - g > k
word
:> 2 decrement
n highest word lowest word q
ntop

25/40

Compute ¥ mod n

/

t
= 1 q k:fnp
It =
: h ntop
- . -
k' |highest word 2ndv:1¢;?:est lowest word whilen - g > k

Il: 2 decrement
n highest word lowest word

ntop

q
3|k=kK —n-q

25/40

Compute ¥ mod n

!/
“ Fiop
1 =
— q
: A ntop
k' |highest word S | .. lowest word while .- ¢ > &'
word
:> 2 decrement
n highest word lowest word q
g Leak via — 7
e Single-Stepping / |3 k=k —n-q
StumbleStepping

25/40

Attack Case Study

ECDSA Nonce Truncation in wolfSSL

1 int _sp_div_impl(sp_int* a, d, r, trial) {

2 for (1 = a->used - 1; i >= d->used; i--) {

3 //Calculate trial quotient

4 t = sp_div_word(a->dp[i], a->dp[i-1], dt);
5 do {

6 for (j = 0; j < d->used; j++) {...}

7 for (j = d->used; j > 0; j--)

8 //Event W,

9 if (trial->dp[j] != a->dp[j + ol)
10 break;

1 if (trial->dp[j] > a->dp[j + ol) { t--; }
12 //Event W

13 } while (trial->dp[j] > a->dp[j + ol);

14 }

15}

26/40

Analyzing the Distributions - Sampling the nonce k 128 million times

bp320r1; Samples in Distribution: 69398026

600000

500000

400000

300000

200000

100000

0
000 025 050 075 100 125 150 175
1e9t

27/40

Analyzing the Distributions - Sampling the nonce k 128 million times

bp320r1; Samples in Distribution: 69398026

600000

500000

400000

300000

200000

100000

0

000 025 050 075 100 125 150 175
1e96

bp320r1; Samples in Distribution: 58388405

600000

500000

400000

300000

200000

100000

0

000 025 050 075 100 125 150 175 27/40
1696

Analyzing the Distributions - Sampling the nonce k 128 million times

bp320r1; Samples in Distribution: 69398026

600000
500000

400000
bp320r1; Samples in Distribution: 213569

300000

200000

100000

0

bp320r1; Samples in Distribution: 58388405

600000

500000

400000

300000

1le96

200000

100000

0

27/40

Analyzing the Distributions - Sampling the nonce k 128 million times

bp320r1; Samples in Distribution: 69398026

600000
500000

400000
bp320r1; Samples in Distribution: 213569

300000

200000

100000

0

bp320r1; Samples in Distribution: 58388405

600000

500000

400000

300000

200000

100000

0

27/40

Nonce Bias

Nonce bit distribution given leaked loop iterations for secp160r1 and
brainpoolP224r1.

100% sesssssssenees 100%
90% 1 90%
80% | 80%
70% 70%
60% 1 60%
SO% 4% ouens" et emueaT e s, et 509% 1
40% 1 40% 1
30% 30%
209% 20%
10% 10% 1

0% 1 0%

i 140 160
Nonce bits

10 20 210 220
Nonce bits

28/40

Leakage Overview in wolfSSL and OpenSSL

wolfSSL OpenSSL
Curve Event Ml / FB Event Ml / FB
(Wq, Wo) [bit / bit] (04, 05) [bit / bit]
PrlA = q] Pr[A = d]
bp224r1 (2,%) 16/1 (1, 0) 716
0.09 1.6-10~%
bp320r1 (3,%) 3/3 (2,%) 3/3
< 0.002 1.7-1073
bp384rl (2, 35/0 (1, 35/0
0.05 0.05
secp160rl (2,%) 156/ 15 (1,%) 158 / 15
1.5-107° 13.107°

29/40

StumbleStepping the Nonce Bias

© 0N OO WN -

e e
Qs WN RO

int

_sp_div_impl(sp_int* a, d, r, trial) {
for (i = a->used - 1; i >= d->used; i--) {

//Calculate trial quotient
t = sp_div_word(a->dp[i], a->dp[i-1], dt);
do {
for (j = 0; j < d->used; j++) {...}
for (j = d->used; j > 0; j--)
//Event W,
if (trial->dp[j] !'= a->dp[j + ol)
break;
ial->dp[j] > a->dp[j + ol) { t--;

>dp[j]l > a->dp[j + o0l);

}

178 instr”
------ “mean for 178 instr.”
3 230 instr”

“mean for 230 instr.”
239 instr”
—————— “mean for 239 instr.”

Inferred Executed Instructions

30/40

StumbleStepping the Nonce Bias

1 int _sp_div_impl(sp_int* a, d, r, trial) {
2
3 100% N 178 instr”
4 06 T | - "mean for 178 instr”
5 3 230 instr”
6 80% . mean for 230 instr.’
7 70% B 239 instr”
8 0% e U "mean for 239 instr.”
o i
9 . v 1
10 50% 1%6%%000,° 000000 0% 0% o0, *e%ene,’,®
11 40%
12 30%
13
14 20%
15 } 10% nferred Executed Instructions
0% . .
0 1 160

Noncebits

30/40

Countermeasures

Improved Single-Stepping Heuristic

Current Heuristic: Benign if
rip_delta > INTEL64_ MAX_INST_LEN %2
OR
vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD
Suggested Improvements:

- Only rely on instruction pointer progress
- AEX-Notify shows that reliable “n-stepping” is not possible

31/40

Improved Single-Stepping Heuristic

Current Heuristic: Benign if
rip_delta > INTEL64_MAX_INST_LEN *2
OR
vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD
Suggested Improvements:

- Only rely on instruction pointer progress
- AEX-Notify shows that reliable “n-stepping” is not possible

31/40

Intel’s TDX Module Patch

if ((rip_delta > INTEL64_MAX_INST_LEN * 2) || (vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD))
// Always use instruction count heuristic if Perfmon is disabled, regardless of TDCS.ATTRIBUTES.
ICSSD
if (!perfmon_enabled)
{
uint64_t inst_retired = ia32_rdmsr(IA32_FIXED_CTRO_MSR_ADDR);
uint64_t rcx_delta = ld_p->guest_rcx_on_td_entry - 1d_p->vp_ctx.tdvps—>guest_state.gpr_state.
rex;

if ((inst_retired > 1) || ((@ == inst_retired) && (rcx_delta > 1)))

{
return FILTER_OK_CONTINUE;

¥
I
else if ((rip_delta > INTEL64_MAX_INST_LEN % 2) || (vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD))
{

return FILTER_OK_CONTINUE;
}

32/40

Preventing Instruction Counting Attacks

- StumbleStepping attack won't be mitigated by TDX module
- Protecting crypto code via constant time programming is feasible

- Protecting databases, image decoding, etc. is not feasible

33/40

Preventing Instruction Counting Attacks

- StumbleStepping attack won't be mitigated by TDX module
- Protecting crypto code via constant time programming is feasible

- Protecting databases, image decoding, etc. is not feasible

33/40

Preventing Instruction Counting Attacks

- StumbleStepping attack won't be mitigated by TDX module
- Protecting crypto code via constant time programming is feasible

- Protecting databases, image decoding, etc. is not feasible

33/40

Preventing Instruction Counting Attacks

- StumbleStepping attack won't be mitigated by TDX module
- Protecting crypto code via constant time programming is feasible

- Protecting databases, image decoding, etc. is not feasible

Need principled mitigations as part of the TEE

33/40

Approach 1: Changing MTF flag

TD

[Instr 1 [Instr 2 [Instr 3

Exit T Exit T Exit
\ 4 \ 4 Y

Enter with Enter with Enter with
° MTF Flag MTF Flag MTF Flag e
Start Stop
Prevention Prevention
Mode TDX Module Mode

34/40

Approach 1: Changing MTF flag

TD
[Instr 1] [Instr 2] [Instr 3
Exit
\ 4
Enter with
Variable Step
MTF Flag
Start Stop
Prevention Prevention
Mode TDX Module Mode

Implementation effort hard to judge for us

35/40

Approach 2: AEX-Notify

Recap Single-Stepping:
l , \ 4

[Attack Logic] [Setup APIC Timer] [Enter VM] ‘ Instr 1 ‘ Instr 2 ‘ Instr 3

36/40

Approach 2: AEX-Notify

Recap Single-Stepping:

[Attack Logic] [Setup APIC Timer] [Enter VM] ‘ Instr 1 ‘ Instr 2 ‘ Instr 3

36/40

Approach 2: AEX-Notify

Recap Single-Stepping:

—

] [Setup APIC Tlmer] [Enter VM] Instr 1 Instr 2 ‘ ‘ Instr 3

Attack Logic
+ Flush TLB, ...

36/40

Approach 2: AEX-Notify

Recap Single-Stepping:

— .\

] [Setup APIC Tlmer] [Enter VM] Instr 1 Instr 2 ‘ ‘ Instr 3

Attack Logic
+ Flush TLB, ...

Without slowing down Instr 1, reliable, repeated single-stepping is not
possible

36/40

Approach 2: AEX-Notify cont.

AEX-Notify idea:

\\‘

] [Setup APIC Tlmer] [Enter VM] Prefetch Instr 1 ‘ Instr 1 ‘ ‘ Instr 2 ‘ Instr 3

Attack Logic
+ Flush TLB, ...

37/40

Approach 2: AEX-Notify cont.

AEX-Notify idea:

\\‘

] [Setup APIC Tlmer] [Enter VM] Prefetch Instr 1 ‘ Instr 1 ‘ ‘ Instr 2 ‘ Instr 3

Attack Logic
+ Flush TLB, ...

- Prefetch code is constant time

- Small, atomic part at the end

37/40

Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes = portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40

Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes = portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40

Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes = portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40

Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes = portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40

Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes = portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?

38/40

What about page fault side channel

- Page granular leakage already sufficient to leak image from jpeg decoding
- TDX already protects the 2nd level page tables but exports page blocking API
- Why not completely restrict forcing page faults?

39/40

What about page fault side channel

- Page granular leakage already sufficient to leak image from jpeg decoding
- TDX already protects the 2nd level page tables but exports page blocking API
- Why not completely restrict forcing page faults?

39/40

What about page fault side channel

- Page granular leakage already sufficient to leak image from jpeg decoding
- TDX already protects the 2nd level page tables but exports page blocking API

- Why not completely restrict forcing page faults?

39/40

Summary

- Attacks on TDX

- full single-stepping

- instruction counting via StumbleStepping;
- Finding & Exploiting Control Flow Leakages

- Microwalk + Distribution Analysis
- Nonce truncation in wolfSSL and OpenSSL leaks for certain curves

- Countermeasures

- Improved MTF flag, AEXNotify for CVMs
- Preventing page fault side-channel?

- Responsible Disclosure:

- Intel fixed single-stepping with TDX module 1.5.06 but not StumbleStepping
- wolfSSL and OpenSSL switched to rejection sampling

40/40

Backup Slides

	Single-Stepping Attacks
	Countermeasure in TDX
	Single-Stepping TDX
	StumbleStepping TDX
	Primitive Evaluation
	Finding Control Flow Leakages
	Attack Case Study
	Countermeasures
	Summary
	Appendix

