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Overview

1. Attacks on TDX
2. Finding Control Flow Leakages
3. Countermeasures
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Confidential VMs

Goal: Remove cloud provider from TCB

• AMD SEV-SNP
• Intel TDX
• (ARM CCA)

Available in the wild on
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Single-Stepping Attacks
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Single-Stepping: The bane of TEEs

Interrupt Latency Attacks Instruction Counting Attacks

Amplifier Zero-Stepping Attacks
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History of Single-Stepping
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Countermeasure in TDX



Single-Stepping Countermeasure
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Single-Stepping Countermeasure

Two attacks
1. Single-Stepping
2. StumbleStepping
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Single-Stepping TDX



Re-enable Single-Stepping
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Filtering Zero-Steps

• SGX-Step: Check if “Accessed”-bit is set

⇒ 2nd level page tables inaccessible
with TDX

• SEV-Step: Performance monitoring counters⇒ isolated by TDX
• Cache attack on TD code page: works
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Interlude: Zero-Stepping Attacks
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Timer-based Zero-Stepping Attacks

Idea
1. Repeatedly trigger context switch without state change
2. Leak information from context switch
3. Example: RAPL software power measurements
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Timer-based Zero-Stepping on TDX
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StumbleStepping TDX
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StumbleStepping Details

1. StumbleStepping needs high frequency cache observations
2. Regular Flush+Reload blocked by MKTME
3. But also: MKTME coherency mechanism enables KeyID-based Flush+Reload
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Exploiting MKTME’s coherency mechanism

KeyID based coherency mechanism for flushing cache lines
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StumbleStepping Details

• Cache attack X

• Frequency throttling improves temporal resolution even more

• Page faults for precise termination of prevention mode
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Primitive Evaluation



Secret Dependent Control-Flow
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Exploitation with Single-Stepping
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Exploitation with StumbleStepping
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Synthetic Single-Stepping Evaluation

Goals: Filter all zero-steps & show absence of multi-steps

Evaluation target

• 3 configs: 1, 9 and 10 loop iterations
• corresponds to 8, 56 and 62
instructions

• 10 000 measurements for each config
• Found no errors
• only 0.8% zero-step events
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Synthetic StumbleStepping Evaluation

Goals: Evaluate Accuracy of inferred instruction count

Evaluation Target

Inferred Executed Instructions

However...
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Synthetic StumbleStepping Evaluation cont.

Noise grows with observation length

Inferred Executed Instructions
(short)

Inferred Executed Instructions
(long)
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StumbleStepping E2E Attack Sneak Peek

Control Flow events for secp160r1 ECDSA in wolfSSL
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Finding Control Flow Leakages



Finding Control-Flow Leakages with Microwalk

Microwalk
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Modular Reduction in ECDSA

ECDSA is a signature scheme, it requires a nonce k that must remain secret

1. Goal: Get random nonce k < n

2. Also: Get it fast
3. Modular reduction approach:

3.1 Sample candidate nonce k′

3.2 Compute k as k′ mod n
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Compute k′ mod n
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Compute k′ mod n
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Attack Case Study



ECDSA Nonce Truncation in wolfSSL

1 int _sp_div_impl(sp_int* a, d, r, trial) {
2 for (i = a->used - 1; i >= d->used; i--) {
3 //Calculate trial quotient
4 t = sp_div_word(a->dp[i], a->dp[i-1], dt);
5 do {
6 for (j = 0; j < d->used; j++) {...}
7 for (j = d->used; j > 0; j--)
8 //Event W2

9 if (trial->dp[j] != a->dp[j + o])
10 break;
11 if (trial->dp[j] > a->dp[j + o]) { t--; }
12 //Event W1

13 } while (trial->dp[j] > a->dp[j + o]);
14 }
15 };
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Analyzing the Distributions - Sampling the nonce k 128 million times
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Nonce Bias

Nonce bit distribution given leaked loop iterations for secp160r1 and
brainpoolP224r1.
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Leakage Overview in wolfSSL and OpenSSL

wolfSSL OpenSSL

Curve Event MI / FB Event MI / FB

(W1, W2) [bit / bit] (O1, O2) [bit / bit]
Pr[A = a] Pr[A = a]

bp224r1 (2, *) 1.6 / 1 (1, 0) 7 / 6
0.09 1.6 · 10−4

bp320r1 (3, *) 3 / 3 (2, *) 3 / 3
< 0.002 1.7 · 10−3

bp384r1 (2, *) 3.5 / 0 (1, *) 3.5 / 0
0.05 0.05

secp160r1 (2, *) 15.6 / 15 (1, *) 15.8 / 15
1.5 · 10−5 1.3 · 10−5
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StumbleStepping the Nonce Bias
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StumbleStepping the Nonce Bias
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Countermeasures



Improved Single-Stepping Heuristic

Current Heuristic: Benign if
rip_delta > INTEL64_MAX_INST_LEN ∗ 2

OR
vcpu_tsc_delta(ld_p) > STEPPING_TSC_THRESHOLD

Suggested Improvements:
• Only rely on instruction pointer progress
• AEX-Notify shows that reliable “n-stepping” is not possible
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Intel’s TDX Module Patch
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Preventing Instruction Counting Attacks

• StumbleStepping attack won’t be mitigated by TDX module
• Protecting crypto code via constant time programming is feasible
• Protecting databases, image decoding, etc. is not feasible

Need principled mitigations as part of the TEE
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Approach 1: Changing MTF flag
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Approach 1: Changing MTF flag

Implementation effort hard to judge for us
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Approach 2: AEX-Notify

Recap Single-Stepping:

Without slowing down Instr 1, reliable, repeated single-stepping is not
possible
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Approach 2: AEX-Notify cont.

AEX-Notify idea:

• Prefetch code is constant time
• Small, atomic part at the end
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Approach 2: Integrate AEX-Notify with CVMs

Idea:

1. Build on existing interrupt injection mechanisms
2. Execute AEX-Notify prefetch as part of each interrupt
3. For VM enter without interrupt injection: Force injection of dummy interrupt

Pro: Minimial HW-RoT changes⇒ portable across CVMs?
Con: Overhead of prefetch, Zero-Stepping security?
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What about page fault side channel

• Page granular leakage already sufficient to leak image from jpeg decoding
• TDX already protects the 2nd level page tables but exports page blocking API
• Why not completely restrict forcing page faults?
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Summary

• Attacks on TDX
• full single-stepping
• instruction counting via StumbleStepping;

• Finding & Exploiting Control Flow Leakages
• Microwalk + Distribution Analysis
• Nonce truncation in wolfSSL and OpenSSL leaks for certain curves

• Countermeasures
• Improved MTF flag, AEXNotify for CVMs
• Preventing page fault side-channel?

• Responsible Disclosure:
• Intel fixed single-stepping with TDX module 1.5.06 but not StumbleStepping
• wolfSSL and OpenSSL switched to rejection sampling
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